Главная arrow Микродраже arrow Механическая прочность    
Введение
История
Введение в технологию
Биофармация
Нормативная база
Аптечное производство
Фармацевтические несовместимости
Физико-химические
Химические
Затруднительные случаи
Познавательно
Промышленная технология лекарств
Введение
Процессы
Реакции
Оборудование
Другие лекарственные формы
Ветеринарные
Газообразные
Глазные
Гомеопатические
Для инъекций
Для новорожденных
Органопрепараты
Пролонгированного действия
С антибиотиками
О проекте
О проекте

Механическая прочность

Печать E-mail
  Ее обуславливает взаимосцепляемость частиц. Какие же силы обеспечивают сцепление частиц при таблетировании? Каков механизм превращения сыпучего материала, состоящего из отдельных, не связанных между собой частиц, в твердое тело - таблетку? В начале процесса прессование таблетируемая масса уплотняется, происходит более тесное сближение частиц и создаются условия для проявления сил межмолекулярного и электростатического взаимодействия. Силы межмолекулярного взаимодействия проявляются при сближении частиц на расстоянии 10-6  - 10-7 см. На первой стадии прессования материала происходит сближение и уплотнение частиц материал за счет смещения частиц относительно друг друга  заполнение пустот.

На второй стадии с увеличением давления прессования происходит интенсивное уплотнение материала за счет заполнения пустот и различных видов деформаций, которые способствуют более компактной упаковке частиц. Деформация, которая происходит за счет упругости материала, помогает частицам взаимно вклиниваться, что увеличивает контактную поверхность. Этому же способствует и деформация, происходящая за счет пластических свойств материала, которая заставляет частицы изменять свою форму и плотнее прилегать друг к другу. На второй стадии прессования и сыпучего материала образуется компактное пористое тело, обладающее достаточной механической прочностью.

И, наконец, на третьей стадии прессования происходит объемное сжатие образовавшегося компактного тела.

Механическая прочность зависит от примененного давления, однако, весьма существенно как будет развиваться давление при прессовании. Давление называется жестким, если оно возникнет внезапно - в ударных таблеточных машинах. Поверхность таблетки под ударом пуансонов сильно разогревается (переход механической энергии в тепловую), вследствие чего вещества сплавляются и образуют сплошной цементирующий слой.

Давление называется прогрессивным, если оно нарастает постепенно - в ротационных таблеточных машинах. Прогрессивное давление дает лучшие результаты, поскольку обеспечивает боле длительное воздействие давления на таблетируемую массу. Чем оно длительнее, тем полнее из массы будет удален воздух, который потом, после снятия давления, расширяясь, не сможет оказать разрушающее влияние на таблетки. Кроме того, значительно ослабляется разогревание таблетки у поверхности, что исключает вредное влияние его на вещества, входящие в состав таблетки.

Однако применение высокого давления при прессовании может (-) влиять на качество таблеток и способствовать износу таблеточных машин. Высокое давление можно компенсировать прибавлением веществ, обладающих большим дипольным моментом и обеспечивающих сцепляемость частиц при сравнительно небольших давлениях. Вода, обладая достаточным дипольным моментом, являясь «мостиком» между ними.

Связыванию частиц трудно растворимых и нерастворимых ЛП вода будет препятствовать. В таких случаях требуется добавление веществ с более высокой силой сцепления (растворы крахмала, желатина и др.). И опять прибегают к гранулированию, чтобы с его помощью в таблетируемую массу  вводить связывающие вещества, которые повышают пластичность лекарственных веществ, и проявляется свойство, называемое адгезией, которая обуславливает прилипание частиц друг к другу.

 
« Пред.   След. »
Твердые лекарственные формы
Горчичники
Гранулы
Драже
Капсулы твердые
Микродраже
Пеллеты
Порошки
Сборы
Спансулы
Суппозитории
Таблетки
Мягкие лекарственные формы
Гели
Капсулы мягкие
Линименты
Мази
Микрокапсулы
Пасты
Пилюли
Пластыри
Пленки глазные
Жидкие лекарственные формы
Введение в жидкие ЛФ
Водные растворы
Для бюреточных установок
Коллоидные растворы
Настои и отвары
Настойки
Неводные растворы
Растворы ВМВ
Сиропы
Слизи
Суспензии
Фармакопейные растворы
Экстракты
Эмульсии

© 2024 Фармацевтическая технология - технология лекарств